

Transforming the Lives of Patients WITH SEVERE GENETIC DISORDERS

Stem Cells Regenerative Medicine Congress 2014

September 15, 2014

Forward Looking Statement

These slides and the accompanying oral presentation contain forward-looking statements and information. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify forward looking statements. For example, all statements we make regarding the initiation, timing, progress and results of our preclinical and clinical studies and our research and development programs, our ability to advance product candidates into, and successfully complete, clinical studies, and the timing or likelihood of regulatory filings and approvals are forward looking. All forwardlooking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that we expected. These statements are also subject to a number of material risks and uncertainties that are described in our most recent quarterly report on Form 10-Q, as well as our subsequent filings with the Securities and Exchange Commission. Any forward-looking statement speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Summary - Key Messages

- Potential for one-time transformative treatments for severe genetic and orphan diseases
- Encouraging clinical safety and efficacy data in beta thalassemia and CCALD with growing clinical pipeline
- Industrialized gene delivery platform across people, production, development and deployment
- Disruptive gene addition and gene editing technologies with broad product and deal potential
- Industry leading team and culture funded for success

Ethan – Why We Do What We Do

Cameron

Our Vision – Make Hope a Reality

Seeking to transform the lives of patients with severe genetic and orphan diseases through the development of innovative gene therapy products.

bluebird<mark>bio</mark>"

Time is Now – Rapidly Evolving Landscape

* Patient numbers reflect aggregate patients treated by indication as of ESGCT 2013

bluebird Pipeline

** The Phase I/II HGB-205 and Northstar Studies are our first clinical studies of our current LentiGlobin viral vector and product candidate.

Produce Virus With Gene Payload

β-Thalassemia: Disease Overview

Disease

- Monogenic, severe anemia
- Loss or reduced β-globin production
- Poor quality of life
- Shortened lifespan

Current Treatment

- Chronic transfusions and iron chelation
 - Not curative
 - Iron overload leads to organ failure
- Allo transplant (rarely)
 - Match uncommon
 - High morbidity / mortality due to graft versus host disease

Epidemiology

- Global β-thalassemia prevalence (symptomatic) ~288K; incidence ~60K
- US/Europe β-thalassemia prevalence (treated) ~15K; incidence ~1.5K
 - 60-80% severe/major
- Affects people of Mediterranean, Middle Eastern, South Asian and SE Asian descent

β-Thalassemia: Innovative Product Design

-5.0

Philippe Leboulch

β-Thalassemia: Promising Clinical LG001 Data

bluebird<mark>bio</mark>"

β-Thalassemia: Development Plan Summary

- Improved process
- Selective vector changes
- No transgene changes

Results

- 25 to 30-fold reduction in non-infectious viral particles
- ✓ 3x vector copy number increase

	Northstar Study	HGB-205
Trial Location	US, Australia	France
Phase	1/11	1/11
N	15	7
Indication	β-thalassemia major	β-thalassemia major & sickle cell disease
Sites	Multi-center	1
Status	First Patient Transplanted	First Patient Transplanted

Preliminary HGB-205 data was presented at the EHA Congress (June 14, 2014)

HGB-205 Study : Improved transduction efficiency demonstrated

	Subject 1	Subject 2	Subject 3
Study	HGB-205	HGB-205	LG001
Vector	BB305	BB305	HPV569
Age of Enrollment	18	16	18
Genotype	β0/βΕ	β0/βΕ	βΟ/βΕ
CD34+ VCN	1.5	2.1	0.6
CD34+ cell dose (x10 ⁶ /kg)	8.9	13.6	4.9*

* Subject 3 source of CD34+ cells was bone marrow versus periphery

• 2.5-3.5 times increase in transduction efficiency seen in HGB-205

HGB-205 Study: Higher VCNs pre and post infusion

M. Cavazzana et al European Hematology Association Congress oral presentation (June 14, 2014)

13

HGB-205 Study : Early and high production of 6^{A-T87Q}-globin resulting in rapid transfusion-independence at near normal Hb levels in both patients

- Subject 1: producing 6.6 g/dL of β^{A-T87Q} -globin at 4.5 months
- Subject 2: producing 4.2 g/dL of β^{A-T87Q} -globin at 2 months

Both subjects are transfusion independent

HGB-205 Study : Rapid production of 6^{A-T87Q}-globin leading to transfusion independence

- Rapid production of therapeutic globin (weeks as opposed to one year)
- Both subjects in HGB-205 have near normal hemoglobin levels without transfusion (neither subject has required a transfusion post-engraftment)

HGB-205 Study : Conclusions

- Demonstrated improved manufacturing process and superior transduction efficiency with BB305 vs prior HPV569 vector
- Early and high production of β^{A-T87Q} -globin resulting in rapid transfusion-independence at near normal Hb levels in two patients
- Initial safety profile is consistent with autologous transplantation
- Next steps for LentiGlobin program
 - Complete enrollment 3 treated; 10 of 22 enrolled across HGB-205 and Northstar Studies
 - Initiate HGB-206 Study in SCD HGB-205 data gives growing reason to believe in the potential to treat sickle cell disease

Sickle Cell Disease: Program Summary

Disease

- Monogenic, severe anemia
- Polymerization of β-globin chains deforms / sickles red blood cells
- Poor quality of life
 - Pain crises, stroke, splenomegaly
- Shortened lifespan

Current Treatment

- Non curative treatments
 - Hydroxyurea
 - Blood transfusions
 - Pain management
- Allogeneic HSCT option
 - Match uncommon
 - High morbidity / mortality

Epidemiology

- US/EU Prevalence ~150K
- US/EU incidence ~3K
- Global prevalence ~25M
- Global incidence ~300K

IND Active for HGB-206 Study

HGB-206 Study Plan

	HGB-206	
Trial Location	US	
Phase	I	
Ν	8	
Indication	Severe sickle cell disease	
Clinical Endpoints	Primary : safety Secondary : clinical events*	
Sites	Multi-Center	
Status	Active IND	

*Measure red cell function tests, hemolysis markers, frequency of clinical events secondary to SCD (e.g. severe vaso-occlusive crises, strokes etc.)

Plan to enroll SCD patient in HGB-205 or HGB-206 in 2014

Evidence for why BB305 globin may work for sickle cell disease

- BB305 globin incorporates an antisickling amino acid that is found in fetal hemoglobin (glutamine at position 87)
- Anti-sickling activity of β^{A-T87Q}-globin has been demonstrated in a mouse model of SCD (Science 2001)
- Elevated fetal hemoglobin from hereditary persistence of fetal hemoglobin (HPFH) has shown clinical benefit

Lenti-D: Childhood Cerebral Adrenoleukodystrophy (CCALD) Disease Overview

Disease

- Ultra-orphan, X-linked, monogenic, neurological disorder
- Mutated ABCD1
 peroxisomal transporter
 results in toxic buildup of
 very long chain fatty
 acids (VLCFA)
- Leads to cerebral inflammation & demyelination

Current Treatment

 Untreated cerebral ALD leads to dismal outcomes (vegetative state and death)

 Allogeneic stem cell transplant standard for CCALD (if possible)

Epidemiology

- CCALD most severe form of ALD
- ALD Incidence : 1 in 20,000 (live births)
- Cerebral disease
 - CCALD accounts for 30-40% of ALD
 - AMN accounts for 40-45% of ALD with 40% cerebral
 - ACALD accounts for 5% of ALD

bluebird<mark>bio</mark>"

Promising Clinical Data – CCALD (TG04.06.01 Study)

- NFS / Loes currently stable in all patients
- Gad resolved in 3 out of 4 patients
- Efficacy results comparable to allogeneic transplant
- No gene therapy-related adverse events

Starbeam Study – Phase II/III Design

Open label, multi-center, single arm global study

Design	Primary Endpoints	Secondary Endpoints
 15 Patients Age ≤ 17 Gad Positive Loes Score 0.5 – 9 NFS ≤ 1 	 % of Boys With Major Functional Disabilities (MFDs) at 24 Months After Transplant 	 Neurological Functional Score (NFS) Gad +/- Loes Score Safety

- First patient enrolled (October 2013)
- Multiple clinical sites open
- Anticipate completion of enrollment in 2015

Looking Forward: Convergence of Gene Therapy Technologies

Our Strategic Intent

- Lead the "Gene Therapy" revolution
- Take advantage of growing understanding of disease etiology (genetics) and evolving technologies
- Versatile R&D Strategy Right Tool for the Right Job
- Lever leading gene therapy team, capabilities and resources
- Plant 'seeds' in promising areas of technology innovation

Lentiviral Stem Cell Platform

Chimeric Antigen Receptor (CAR) T Cells

Pregenen Acquisition Homing Endonucleases and MegaTALs Editing Tools

Homing Endonucleases

MegaTAL

- All gene-editing technologies share common features of a DNA binding domain and a DNA cleavage domain
- Acquired expertise in homing endonucleases (HE) and MegaTALs
 - Robust nuclease discovery platform and proprietary database
 - Broad IP portfolio
- Multiple advantages of HE and MegaTALs
 - Naturally occurring gene-editing proteins
 - Highly specific and efficient activity
 - Compact size allows for delivery of multiple proteins
- Broad range of therapeutic applications
 - Complimentary to existing indications

Recent and Upcoming News Flow

2013

- Signed global Oncology collaboration with Celgene
- Completed IPO

24

- ✓ Initiated phase II/III Starbeam Study
- ✓ Initiated two phase I/II Thal studies (Northstar & HGB-205)
- First patient transplanted in Starbeam Study
- First patient transplanted in Thal HGB-205 study

2014

- First patient transplanted in Northstar Study
- Filed IND for sickle cell disease (SCD) study
- Preliminary Thal HGB-205 data at EHA
- Acquired gene-editing company, Pregenen
 - Enroll first SCD patient in HGB-205 or HGB-206 (2014)
 - Preliminary Thal Northstar & HGB-205 data (late 2014)
 - Various clinical publications

2015

- Complete enrollment of Starbeam Study
- Complete enrollment Thal Northstar & HGB-205

Preliminary SCD data

Financial Summary

28.6M Shares Common Stock O/S 7/29/14	2013 Fiscal Year End 12/31/2013 (Audited)	Second Quarter 2014 6/30/2014 (Unaudited)
Cash and Cash Equivalents	\$206.3M	\$285.5M*
Revenues	\$20.1M	\$6.3M
R&D Expenses	\$31.0M	\$13.9M
G&A Expenses	\$14.1M	\$5.7M
Loss from Operations	\$24.9M	\$13.3M

25 * Pro forma estimate: \$175.7M on balance sheet (6/30/14) plus \$109.8M raised during July financing, net of expenses and discounts

bluebird<mark>bio</mark>"

bluebird Core Values

COOPERATIVE

communication

togetherness

empathy

listening

We Strive To Become Legendary In The Eyes Of Patients

